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Small-scale online simulations in guided-wave photonics

Manfred Hammer

Paderborn University, Theoretical Electrical Engineering, Paderborn, Germany

ABSTRACT
Online solvers for a series of standard 1-D or 2-D problems in integrated optics will be discussed. Implemented on the
basis of HTML/JavaScript/SVG with core routines compiled from well tested C++-sources, the quasi-analytical algorithms
require a computational load that can be handled easily even by current mobile devices. So far the series covers the
1-D guided modes of dielectric multilayer slab waveguides and the oblique plane wave reflection from these, the modes
of rectangular channel waveguides (in an approximation of effective indices), bend modes of curved multilayer slabs,
whispering-gallery resonances (“Quasi-Normal-Modes”) supported by circular dielectric cavities, the hybrid modes of
circular multi-step-index optical fibers, bound and leaky modes of 1-D complex multilayers, including plasmonic surface
modes, and, with restrictions, quite general rectangular scattering problems in 2-D.

Keywords: online solvers, mode analysis, 1-D/2-D scattering problems, dielectric multilayers, bend modes, whispering
gallery resonances, circular optical fibers, leaky modes, surface plasmon polaritons.

1. INTRODUCTION
Current mobile devices provide a computing power that is comparable to the supercomputers of two decades ago.1 Hence,
it should be possible to harness those facilities for highly advanced physical simulations, by the standards of 2000, even if
things appear merely small-scale today. With HTML(5) and JavaScript, recent years have seen some standardization,2, 3 in
the encoding of active web-pages, such that it now seems worthwhile to devote effort even to the realization of specialized
scientific projects. We illustrate this approach with a series of online tools4 for typical low-dimensional problems in
computational guided wave photonics.

The solvers are embedded in HTML-pages, with a user-interface encoded in JavaScript, including graphics facilities
(inline SVG5). For the actual core computations, reasonably mature C++-sources exist.6 That codebase includes a couple of
routines concerning numerical linear algebra,7 and routines for the evaluation of Bessel- and Hankel-functions (of integer
order with real arguments,7 and for complex order and complex arguments8–10). With a respective tool11 these sources
are compiled to JavaScript/WebAssembly,12 and thus become directly available for the online computations. The next
Section 2 takes a brief closer look at this computational framework, including some remarks on performance aspects.

Section 3 then provides an overview of our so far existing series of semi-analytical solvers. Roughly, these can be
grouped into tools for eigenvalue problems in 1-D (OMS, PlasS, BendS, Sections 3.1–3.3), and 2-D (EIMS, FiMS, WGMs,
Sections 3.4–3.6), and scattering problems in 1-D (MuLS, Section 3.7) and 2-D (QuEPS, Section 3.8), for configurations
with piecewise constant permittivity, and multilayer slab / rectangular or cylindrical geometry.

2. HTML5 / JAVASCRIPT AS A PLATFORM FOR SMALL-SCALE SCIENTIFIC SIMULATIONS
The online solvers are realized as active web pages; they are executable with any (modern) web browser. The HTML
language2 is used to create the embedding page. The user interface is directly encoded in JavaScript,3 making use of the
manifold HTML form elements. HTML offers graphics facilities e.g. in the form of inline SVG figures.5 These are built
and can be manipulated programmatically through the script language, but can also be exported as standalone picture files
in a high-quality vector format: All (sub-) figures on simulation results in Section 3 have been generated directly by the
online solvers, without further editing. Together with CSS style instructions,13 the full possibilities of modern web pages
become available for the “surface” of the solvers.
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After accessing the pages and scripts on the server, the solver programs run locally on the user’s machine, the speed
depends on the respective hardware. None of the input data is being sent over the internet connection. Note that it is
perfectly possible to run these programs from local files; access to a web server is not required for development work on
these tools.

With a view to the actual scientific simulations, JavaScript has certain features that do rather not advocate it as a
program language, in the first instance: It is an untyped language. The code is interpreted by the web browser (in the first
place). Program execution happens in a single thread, together with the browser loop. Local file access is being restricted
for security reasons. The language is intended to be error-tolerant (“web pages should not break”).

At a second glance, however, it turns out that many of these apparent drawbacks become less relevant: Suitable de-
velopment tools are built into all major browsers. Simulation data and figures can be stored locally by “downloading”
files. Performance issues concerning computational time and memory are taken care of by automatic optimization and
pre-compilation of external code (see next paragraph). Hence, after a certain familiarization period, this framework was
experienced actually as rather convenient also for work of a more scientific nature.

Mature C++ routines6 were available for the actual core computations of all solvers. These have been compiled to
JavaScript (a subset, asm.js) / WebAssembly12 using the “Emscripten” tools.11 Options for optimization exist; the output
files are (partly) in a pre-compiled binary runtime format (.wasm) that can be directly digested by the web browsers. Still,
execution is limited by the JavaScript environment.

One major issue that remains so far in the present implementation is the single-threadedness. Simulations always take
longer than desired, and it is always possible, by cranking up the one or other parameter, to specify an even more complex
task. Since the actual computation and the browser loop share the same thread, this then leads to the browser becoming
unresponsive (error messages “This page is slowing down . . .”). Some effort has been taken to avoid this issue, in the form
of breaking up computations into smaller steps, together with introducing progress bars. For potential future revisions, so
far unexploited features in the language (web workers) and in the compiler (thread support) may offer a way out.

Solver OMS PlasS BendS EIMS FiMS WGMs MuLS QuEPS
Section, Figure 3.1, 2(a) 3.2, 4 3.3, 6 3.4, 8 3.5, 10 3.6, 12 3.7, 14(a) 3.8, 16
Script/Browser 0.23 s 0.14 s 2.63 s 0.05 s 0.11 s 3.48 s 0.33 s 4.12 s
Native C++ 0.18 s 0.09 s 1.48 s < 0.01 s 0.05 s 1.64 s 0.03 s 1.96 s

Table 1. Runtimes for simulations in the script/browser and for executing an equivalent native compiled program.

Table 1 compares runtimes for simulations of some of the problems considered in Section 3. One the one hand,
simulations were carried out in a web-browser (Firefox 94) running the script/precompiled code. On the other hand, the
respective C++-sources where compiled (gcc) and executed on the same Linux desktop machine (“native”). One observes
time penalty factors script/browser-versus-native-C++ of 2.1 (QuEPS), 1.8 (BendS), and 2.1 (WGMs) for the simulations
with less negligible runtimes. Note that the procedures for determining the elapsed time tend to be inaccurate in particular
for the present short periods. Also, the internal state of the browser appears to have some (major) influence on the execution
time. Nevertheless, the table can give an expression of what to expect; in many cases one receives “instantaneous” results.

3. ONLINE SOLVERS
This concerns eigenvalue or scattering problems in the frequency domain, where the angular frequency ω = kc = 2πc/λ
and vacuum wavenumber k are specified through the vacuum wavelength parameter λ, for vacuum speed of light c (excep-
tion: The WGMs-solver in Section 3.6 determines frequency eigenvalues). The solvers are intended for optical frequencies,
and for, in general, nonmagnetic isotropic lossless linear dielectrica. As such, the media are characterized by a relative
permeability µ = 1, and spatially dependent but piecewise constant values of real refractive index n and scalar real di-
electric permittivity ε = n2 (exception: The PlasS-solver in Section 3.2 accepts complex values for refractive index and
permittivity). Facilities for wavelength scans are available for the OMS- and MuLS-solvers in Sections 3.1 and 3.7; here
material dispersion is not being taken into account.
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3.1 Dielectric multilayer step-index waveguides
OMS: a mode solver for integrated optical dielectric multilayer slab waveguides with 1-D cross sections.14 For a wave-
guide definition in terms of refractive indices, layer thicknesses, and a given vacuum wavelength, the script calculates the
propagation constants / effective indices of guided modes and allows to inspect the corresponding optical field patterns.
Facilities for generating parameter scans are available.
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Figure 1. Dielectric multilayer waveguide. A structure withN interior layers is specified
in terms of substrate and cladding refractive indices ns and nc, and refractive indices nj

and thicknesses tj , j = 1, . . . , N , of the interior layers. Cartesian coordinates x, y, z
are oriented such that x is normal to the layer interfaces; the structure is constant along
y and z, while all fields are assumed to be constant along y.

2-D multilayer waveguide problems according to Fig. 1 are considered. The solver looks for TE- and TM-polarized
electromagnetic fields in the form of slab modes

(E,H)(x, z) = φ(x) exp(−iβz)

that propagate along the z-axis, with mode profiles φ, propagation constants β = kNeff, and effective indices Neff. The
principal field components φ = Ey and φ = Hy of TE- and TM-polarized modes satisfy the 1-D Helmholtz equation

∂2xφ+ (k2n2 − β2)φ = 0

within regions with constant refractive index n. Together with the appropriate conditions for continuity of all fields at
the dielectric interfaces, and a condition of normalizability, these equations establish an eigenvalue problem for guided
modes. A standard transfer matrix technique for dielectric multilayer structures15, 16 is implemented, with a search for
β2-eigenvalues on the real axis, driven by nodal properties of principal eigenfields; scenarios with “decoupled” regions are
detected and handled appropriately. Fig. 2 shows example results for a silicon slab configuration.
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Figure 2. A standard Si/SiO2 slab waveguide, air cladding, vacuum wavelength λ = 1.55µm, refractive indices n = 1.45, 3.45, 1.0.
Plots: effective indices Neff of guided modes versus the thickness t1 of the core layer (a), fundamental and first order modes for a layer
of thickness t1 = 0.44µm, principal components Ey and Hy of TE- and TM-modes, respectively (b,c).

3.2 Optical slab waveguides with loss, gain, or leakage
PlasS: an analytic solver for the 1-D eigenmodes of optical multilayer step-index slab waveguides made from media with
in general complex refractive index and complex permittivity.17 Given a potentially guiding configuration defined in terms
of refractive index and/or permittivity, layer thicknesses, if applicable, and the vacuum wavelength, the script calculates the
complex effective indices of the modes supported by the structure, or their phase propagation and attenuation constants,
respectively, and allows to inspect the corresponding optical field patterns. Bound and leaky modes of structures with loss
or gain can be identified, as well as the bound solutions related to the propagation of surface-plasmon-polaritons (SPPs)
along metal-dielectric interfaces.
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Figure 3. Complex multilayer waveguide, schematically. A structure with N interior
layers is specified in terms of substrate and cladding refractive indices ns and nc, and
refractive indices nj and thicknesses tj , j = 1, . . . , N , of the interior layers. Alter-
natively, permittivity values εs, εc, εj can be provided; refractive indices as well as
permittivities can be non-real quantities. Cartesian coordinates x, y, z are oriented such
that x is normal to the layer interfaces; the structure is constant along y and z, while all
fields are assumed to be constant along y.

Complex 2-D waveguide problems according to Fig. 3 are considered. The solver looks for TE- and TM-polarized
electromagnetic fields in the form of slab modes

(E,H)(x, z) = φ(x) exp(−iγz)

that propagate along the z-axis, with mode profiles φ, potentially complex propagation constants γ = kNeff = β − iα,
and effective indices Neff, (real) phase propagation constant β and attenuation constant α. The principal field components
φ = Ey and φ = Hy of TE- and TM-polarized modes satisfy the 1-D Helmholtz equation

∂2xφ+ (k2ε− γ2)φ = 0

within regions with constant permittivity ε. Together with the appropriate conditions for continuity of all fields at the
dielectric interfaces, and a condition of normalizability, these equations establish an eigenvalue problem for bound modes.
Alternatively, boundary conditions of exclusively outgoing waves on the outermost layers lead to eigenvalues problems for
leaky modes.

A transverse resonance condition can be established by a standard transfer matrix technique for the scalar principal
fields. Then valid propagation constants need to be identified as roots of this condition in the complex plane. Initial
guesses are generated by considering a “nearby”, truly guiding structure with only the real part of the permittivity profile
(note that this well includes the imaginary parts of the complex refractive indices, to some degree). The real propagation
constants of bound modes found for these permittivity profiles then serve as starting points for tracing roots in the complex
plane, for structures with gradually increasing imaginary parts of the complex permittivity, and/or for gradually increasing
refractive index on the outermost layer(s), respectively. In each step, a complex secant method converges the initial guesses
numerically to actual roots. Further heuristics are applied for the removal of doublets, and for the classification and ordering
of these roots. Fig. 2 shows example results for the short- and long-range surface-plasmon-polariton modes supported by
a thin metal layer, for a set of parameters adopted from Ref. 18.
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Figure 4. A gold layer of 40 nm thickness, with air cladding, at vacuum wavelength λ = 0.775µm, with permittivity ε = 1.0 :
−23.6 − i1.69 : 1.0 (cf. Ref. 18). The structure supports “short-range” (TM1, a, c) and “long-range” (TM0, b, d) surface-plasmon-
polariton modes, with effective refractive indicesNeff,SR = 1.04805− i5.69 ·10−3, Neff,LR = 1.00976− i2.77 ·10−4, and propagation
lengths Lp = 1/(2α) of Lp,SR = 10.8µm, Lp,LR = 222.3µm, respectively. Plots: profiles (a, b) and propagation snapshots (c, d) of
the principal magnetic field component Hy .

3.3 Slab waveguide bends
BendS: a mode solver for bent integrated optical dielectric multilayer slab waveguides and curved dielectric interfaces with
1-D cross sections.19 For a bend configuration defined in terms of bend radius, refractive indices, layer thicknesses, if
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applicable, and the vacuum wavelength, the script calculates the complex effective indices of the (leaky) modes supported
by the bend, or their phase propagation and attenuation constants, respectively, and allows to inspect the corresponding
optical field patterns.
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Figure 5. Schematic of a bent waveguide. A structure with N intermediate curved layers
is specified in terms of interior and exterior refractive indices ni and ne, and refractive
indices nj and thicknesses tj , j = 1, . . . , N , of the intermediate layers. The bend radius R
measures the distance from the origin to the outermost interface. Cartesian coordinates x, y,
z and cylindrical coordinates r, θ, y are introduced, where x and z, or r and θ, respectively,
span the cross sectional plane. The bend structure is constant along θ; the structure and all
fields are assumed to be constant along y.

2-D multilayer bent waveguide problems according to Fig. 5 are considered. The solver looks for TE- and TM-polarized
electromagnetic fields in the form of bend modes

(E,H)(r, θ) = φ(r) exp(−iγRθ)

that propagate along the angular direction θ, with mode profiles φ, complex propagation constants γ = kNeff, and complex
effective indices Neff. The principal field components φ = Ey and φ = Hy of TE- and TM-polarized modes satisfy the
1-D radial Helmholtz equation

∂2rφ+ r−1∂rφ+ (k2n2 − r−2γ2R2)φ = 0

within regions with constant refractive index n. Together with the appropriate conditions for continuity of all fields at the
dielectric interfaces, and conditions of field regularity at the origin and exclusively outgoing waves in the exterior region,
these equations establish an eigenvalue problem for the bend modes.9, 20

A transfer matrix technique transforms the radial problem to a transverse resonance condition, roots of which need to
be identified in the complex plane. To generate initial estimates, the bend-mode problem is translated to an equivalent
straight waveguide problem,15 followed by feeding restricted staircase approximations of the resulting effective refractive
index profiles to the 1-D multilayer slab mode solver of Refs. 6, 14. A complex secant method then converges the initial
guesses numerically to actual roots. Further heuristics are applied for the classification and ordering of these solutions. As
an example, Fig. 6 shows the three bend modes supported by a nonsymmetric curved slab.
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Figure 6. A bent slab waveguide, SiO2/Si3N4/air layers, index contrast 1.45 : 1.99 : 1.0, core thickness t1 = 0.4µm, bend radius
R = 7µm (outer rim), TE waves at vacuum wavelength λ = 1.55µm. Modes of lowest radial order with effective indices Neff =
1.65− i 1.4 ·10−13 (TE0, a), 1.17− i 2.9 ·10−4 (TE1, b), 1.02− i 6.4 ·10−3 (TE2, c); principal electric componentEy , time snapshots.

3.4 Rectangular 2-D waveguides, variational effective index approximation
EIMS: an approximate, semi-analytic mode solver for dielectric integrated optical waveguides with two-dimensional light
confinement and weak lateral guiding.21 For a waveguide configuration specified in terms of refractive indices, layer
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Figure 7. A rectangular waveguide configuration. A structure with
Nl inner layers and Ns inner slices is specified in terms of a matrix
of refractive indices nl,s, l = 0, . . . , Nl + 1, s = 0, . . . , Ns + 1,
thicknesses tl, l = 1, . . . , Nl, of the intermediate layers, and widths
ws, s = 1, . . . , Ns, of the inner slices. Cartesian coordinates x, y, z
are oriented such that x and y are parallel to the interfaces of slices
and layers; the structure is constant along z.

thicknesses, slice widths, and the vacuum wavelength, the script calculates the propagation constants / effective indices of
guided modes and allows to inspect the corresponding optical field patterns.

3-D waveguide problems according to Fig. 7 are considered. The solver looks for electromagnetic fields in modal form

(E,H)(x, y, z) = φ(x, y) exp(−iβz)

that propagate along the z-axis, with mode profiles φ, propagation constants β = kNeff, and effective indices Neff. All
components φ of the mode profile satisfy the 2-D Helmholtz equation

∂2xφ+ ∂2yφ+ (k2n2 − β2)φ = 0

within all regions with constant refractive index n. Together with the appropriate conditions for continuity of the elec-
tromagnetic fields at the dielectric interfaces, and a condition of normalizability, these equations establish a vectorial
eigenvalue problem for guided modes.
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Figure 8. Coupler of two rib waveguides, shallow ribs with thicknesses t1 = 0.5µm, t2 = 0.05µm, of widths w1 = w3 = 1µm, at
a distance of w2 = 3µm, refractive index contrast 1.45 : 1.99 : 1.0. At wavelength λ = 1.55µm, the VEIMS solver identifies two
quasi-TE-modes with effective indices Neff = 1.77202 (TE0,0, a) and Neff = 1.76965 (TE0,1, b), and thus predicts a coupling length
Lc = 328µm.

The solver then relies on a variational variant of the effective index method22 to reduce things to a series of scalar
1-D eigenvalue problems. More specifically, the script implements what is called VEIM51,0,0,0 (TE) and VEIM50,0,1,0
(TM) in Section 9.2 of Ref. 23; the expressions of Sections 7.1 and 7.2 of Ref. 23 apply. Initially, the solver examines
the slab waveguides associated with the refractive index profiles of the interior slices. The slice that supports the guided
slab mode with the largest propagation constant is selected as the reference slice. Its guided slab modes serve as potential
vertical profiles for the actual 2-D modes. For each of these, the solver computes a lateral effective permittivity profile
and determines the 1-D modes supported by this effective permittivity. Those are then used as horizontal profiles for the
separable 2-D mode fields. One arrives at semi-vectorial 5-component approximations of the true vectorial modes. Fig. 8
shows example results for a coupler configuration that connects two shallow rib waveguides.

3.5 Circular multi-step index optical fibers
FiMS: an online solver for the guided modes supported by circular dielectric optical fibers with radially piecewise con-
stant refractive index profiles.24 For a fiber defined in terms of (outer) core radius, refractive indices, and thicknesses of
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intermediate layers (if applicable), and a specific vacuum wavelength, the script calculates the effective mode indices and
propagation constants of the vectorial, hybrid modes supported by the fiber.
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n1

R

r

nN

ne

...

x

y

θni

Figure 9. Schematic of a multilayer step-index optical fiber. A circular structure with N
intermediate layers is specified in terms of interior and exterior refractive indices ni and
ne, and refractive indices nj and thicknesses tj , j = 1, . . . , N , of the intermediate lay-
ers. The fiber radius R measures the distance from the origin to the outermost interface.
Cartesian coordinates x, y, z and cylindrical coordinates r, θ, y are introduced, where
x and z, or r and θ, respectively, span the cross sectional plane. The fiber structure is
constant along θ and z.

3-D waveguide problems according to Fig. 9 are considered. The solver looks for electromagnetic fields in modal form

(E,H)(r, θ, z) = φ(r) exp(−ilθ − iβz)

that propagate along the z-axis, with mode profiles φ, integer angular mode order l, propagation constants β = kNeff, and
effective indices Neff. All components φ of the mode profile satisfy the 1-D radial Helmholtz equation

∂2rφ+ r−1∂rφ+ (k2n2 − r−2l2 − β2)φ = 0

within all regions with constant refractive index n. Together with the appropriate conditions for continuity of the electro-
magnetic fields at the dielectric interfaces, and a condition of normalizability, these equations establish a series of separate
vectorial eigenvalue problems for different angular order l, formulated in terms of the principal axial electric and magnetic
field components. Following standard theory,16, 25 the solver applies a transfer matrix technique to establish a transverse
resonance condition. Roots are identified by a largely heuristical search procedure on the real axis. As an example, Fig. 10
shows field profiles associated with a series of higher order OAM modes of a silica rod.
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Figure 10. A step-index fiber, refractive index contrast 1.45 : 1.0, rod radius R = 3.5µm. At vacuum wavelength λ = 1.55µm,
the fiber supports (among several others) the orbital-angular-momentum modes OAM(±3,m), m = 1, . . . , 7 of angular order ±3 with
effective indices Neff of 1.4082 (m = 1, a), 1.3349 (m = 3, b), 1.2232 (m = 5, c), and 1.0705 (m = 7, d). The plots show the axial
electric field |Ez|2 for superpositions of the degenerate modes OAM(−3,m) and OAM(3,m) with unit relative amplitudes.

3.6 Circular dielectric optical cavities
WGMs: an online solver for the whispering gallery resonances of microrings, microdisks, or more general 2-D circular
dielectric multilayer cavities in integrated optics / photonics.26 Following the structure definition in terms of cavity radius,
refractive indices, and layer thicknesses, if applicable, and the specification of a target vacuum wavelength or of an interval
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of potential resonance wavelengths, the script calculates the complex angular eigenfrequencies of the (leaky) whispering
gallery modes (WGMs) supported by the cavity, and their resonance wavelengths and linewidths, resonance frequencies,
cavity lifetimes, and quality (Q-) factors, respectively.

Figure 11. A circular step-index cavity, schematically. A structure with N interme-
diate layers is specified in terms of interior and exterior refractive indices ni and ne,
and refractive indices nj and thicknesses tj , j = 1, . . . , N , of the intermediate layers.
The cavity radius R measures the distance from the origin to the outermost interface.
Cartesian coordinates x, y, z and cylindrical coordinates r, θ, y are introduced, where
x and z, or r and θ, respectively, span the cross sectional plane. The cavity structure is
constant along θ; the structure and all fields are assumed to be constant along y.

Resonance problems for 2-D multilayer cavities according to Fig. 11 are considered. The solver looks for TE- and
TM-polarized electromagnetic fields in the form of whispering gallery modes / quasinormal modes

(E,H)(r, θ, t) = φ(r) exp(iωct− imθ)

of integer angular ordermwith profileφ that oscillate in time with complex eigenfrequency ωc = ω+iα, for real resonance
frequency ω and attenuation constant α. A resonance wavelength λ = 2πc/ω and quality factor Q = ω/(2α) is associated
with each mode. The principal field components φ = Ey and φ = Hy of TE- and TM-polarized WGMs satisfy the 1-D
radial Helmholtz equation

∂2rφ+ r−1∂rφ+ (c−2ω2
cn

2 − r−2m2)φ = 0

within regions with constant refractive index n. Together with the appropriate conditions for continuity of all fields at the
dielectric interfaces, and conditions of field regularity at the origin and exclusively outgoing waves in the exterior region,
these equations establish an eigenvalue problem27 for the complex frequency eigenvalue ωc.
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Figure 12. A dielectric disk, refractive index contrast 1.5 : 1.0, radiusR = 10µm, TE waves at target vacuum wavelength λ = 1.55µm.
Plots: whispering gallery modes of specific radial and angular order, with resonance wavelength λr = 1.548µm and quality factor
Q = 2.3 ·108 (TE0,55, a), λr = 1.538µm andQ = 1.6 ·102 (TE3,42, b, c, d); time snapshots of the principalEy field (a, b) and absolute
value |Ey| (c, d), for single WGMs (a, b, c) and for a superposition of degenerate modes TE3,42 and TE3,-42 (d).

A transfer matrix technique transforms the radial problem to a transverse resonance condition, roots of which need to
be identified in the complex plane. The solver tries to identify modes with resonance wavelengths that are either close to
a target vacuum wavelength, or fall within a specific interval of vacuum wavelengths. To generate initial root estimates,
the related bend-mode problem is translated to an equivalent straight waveguide problem,15 followed by feeding restricted
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staircase approximations of the resulting effective refractive index profiles to the 1-D multilayer slab mode solver of Refs.
6, 14. A complex secant method converges these initial guesses numerically to actual roots. Further heuristics are applied
for the classification and ordering of these solutions. Fig. 12 illustrates field profiles of two whispering gallery modes
supported by a 2-D disk cavity.

3.7 Oblique plane wave incidence on dielectric multilayer stacks
MuLS: a solver for problems of plane wave reflection from dielectric multilayer systems at oblique incidence.28 Given the
stack definition in terms of refractive indices, layer thicknesses, vacuum wavelength, and the angle of incidence, the script
calculates reflectance and transmittance properties for s- and p-polarized waves, and allows to inspect the corresponding
optical fields. Facilities for evaluating parameter scans / spectra are available. The script can serve as a basic tool for the
design of dielectric multilayer coatings / reflectors / filters.

Figure 13. A dielectric multilayer stack. Incoming and reflected waves are present in exterior
region I, propagating at angles θI. Transmitted waves are observed in exterior region II at
angle θII. A structure withN interior layers is specified in terms of refractive indices nI and
nII on the input and exit side, and refractive indices nj and thicknesses tj , j = 1, . . . , N ,
of the interior layers. Cartesian coordinates x, y, z are oriented such that x is normal to the
layer interfaces; the structure is constant along y and z. All fields are assumed to be constant
along y, the x- and z-axes span the plane of incidence.

2-D problems of plane wave reflection from a dielectric multilayer stack are considered, as shown in Fig. 13. For given
angle of incidence θI and respective wavenumber kI,z = knI sin θI, the solver computes perpendicularly s/TE- and parallel
p/TM-polarized electromagnetic fields of the form

(E,H)(x, z) = φ(x) exp(−ikI,zz)

with profile function φ. The principal field components φ = Ey and φ = Hy of s/TE- and p/TM-polarized solutions satisfy
the 1-D Helmholtz equation

∂2xφ+ (k2n2 − k2I,z)φ = 0

within regions with constant refractive index n. Together with the appropriate conditions for continuity of all fields at the
dielectric interfaces, and a condition of only outgoing reflected and transmitted waves in regions I and II, respectively, these
equations establish the linear scattering problem. A standard transfer matrix technique for dielectric multilayer structures29

is applied to solve this system for internal field solutions, for the associated reflection and transmission coefficients, and
for reflectance and transmittance values, respectively. Fig. 2 shows example results for a multilayer Bragg reflector with a
defect cavity at its center.
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Figure 14. A Bragg-resonator with 19 interior layers, with refractive indices n = 1, 2, 1, 2, . . . , 2, 1 and quarter-wave thicknesses
ti = λ/(4ni), with a central cavity layer of thickness t10 = λ/(2n10). Normal incidence θI = 0◦ of waves at target wavelength
λ = 1.55µm is considered, Plots: transmittance T and reflectance R versus wavelength λ (a), field profiles Ey at λ = 1.55µm, at
resonance (b), and at λ = 1.7µm, off-resonance, in the reflectance bandgap (c).

9

Proc. of SPIE Vol. 12004  1200414-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 21 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



3.8 Rectangular optical guided-wave scattering problems
QuEPS: The scalar polarized 2-D Helmholtz equations are addressed, on a rectangular computational domain with trans-
parent boundary conditions that permit guided wave in- and outflux. Given a problem specification in terms of interface
positions, a matrix of refractive index values, polarization and wavelength parameters, and guided wave input, the script30

determines modal output amplitudes (elements of the scattering matrices), and the power levels associated with guided and
nonguided directional outgoing waves (transmittances / reflectances, power balance).
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. .
.

x
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Figure 15. Schematic of the rectangular scattering problems. A structure
with Nl inner layers and Ns inner slices is specified in terms of a matrix
of refractive indices indices nl,s, l = 0, . . . , Nl + 1, s = 0, . . . , Ns +
1, thicknesses tl, l = 1, . . . , Nl, of the intermediate layers, and widths
ws, s = 1, . . . , Ns, of the inner slices. Cartesian coordinates x, y, z are
oriented such that x and z are parallel to the interfaces of slices and layers;
the structure and all fields are assumed to be constant along y. The solver
works on a cross-shaped computational domain, with an inner rectangular
computational window (x, z) ∈ [xbxt] × [zl, zr]. The window is set by the
distances ∆xb, ∆xt, ∆zl, ∆zz between the outermost interface positions,
and the boundary locations.

Rectangular guided wave scattering problems according to Fig. 15 are considered. Individual amplitudes can be spec-
ified for incoming guided modes that are supported by the channels on all four sides of the inner computational window.
The solver then computes electromagnetic fields (E,H)(x, z) as functions of the cross sectional coordinates x, z, where
the principal components Ey of TE- and Hy of TM-polarized fields satisfy the 2-D Helmholtz equation

∂2xφ+ ∂2yφ+ k2n2φ = 0

within all regions with constant refractive index n. Together with the appropriate conditions for continuity of the electro-
magnetic fields at the dielectric interfaces, and conditions of only outgoing waves in the exterior regions of the cross-shaped
computational domain (beyond the given incoming modes), these equations establish the linear scattering problem.

The solver follows an algorithm for quadridirectional eigenmode propagation (QUEP).31 The electromagnetic field is
expanded into the sets of normal modes (1-D slab modes with Dirichlet boundary conditions) supported by the refractive
index profiles associated with the layers and slices that make up the circuit. Inside the inner computational window,
quadridirectional expansions into modes that propagate in the ±x- and ±z-directions apply. Bidirectional expansions in
the half-infinite exterior regions ensure that the boundaries of the inner window become transparent for outgoing (scattered)
waves from the interior. The system is solved for the full interior field solution, for the associated output amplitudes of
guided modes on all outgoing channels, and for the outgoing power fractions that traverse the boundaries of the inner
computational window. Figs. 16 and 17 show results of simulations of a waveguide facet and of a rectangular resonator
circuit.31
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Figure 16. Facet of a slab waveguide, a Si3N4-core (n = 1.99) of thickness
t1 = 0.3µm surrounded by SiO2 (n = 1.45). Incidence of the guided TE0-
wave at vacuum wavelength λ = 1.55µm leads to about 2% reflectance. QUEP-
computation with 124×133 spectral terms, (xt−xb)×(zr−zl) = 9.6×10.3µm2.
Plot: snapshot of the principal TE component Ey .
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Figure 17. A square 2-D microresonator with perpendicular port waveguides, cores
of thickness t1 = w3 = 0.1µm, separated by gaps t2 = 0.355µm,w2 = 0.385µm
from the cavity of dimension w1 × t3 = 1.786µm2, index contrast 3.4 : 1.0; TE0-
excitation from the left at λ = 1.55µm, guided output power 22% (left), 46% (top),
22% (right). QUEP-computation 133× 133 spectral terms, (xt−xb)× (zr− zl) =
10.2× 10.3µm2. Plot: principal TE component Ey , absolute value.

4. CONCLUDING REMARKS
A series of online solvers for small-scale eigenvalue and scattering problems in guided wave photonics are discussed. These
are realized in a framework of HTML web pages, with active content coded in JavaScript, and optimized core routines
compiled from established external sources (here C++). We observed penalty factors of about 2 in computational time,
when comparing the scripts running in a web browser with executables compiled specifically for the respective machine.
The solvers generate directly figures as shown in the preceding sections. Where appropriate, facilities for time-animation
of complex frequency-domain fields are provided, in the form of repeated loops over one time period. The programs might
be viewed as examples for the possibilities offered by the HTML/JavaScript/SVG framework for the online dissemination
of academic simulation tools.

On the one hand, in a context of scientific simulations, this web-centered environment has certain shortcomings, mostly
related to the particularities of the program language, and to security restrictions required for external web pages. On the
other hand, all the burdens (compatibility, installation, distribution) that otherwise might prevent the use of an academic
simulation tool by “others” are entirely absent. Our programs have proven to be particularly useful for purposes of demon-
stration and teaching, but just as well for other, more “serious” tasks in integrated photonics design. All solvers are free to
use, available online at https://www.siio.eu.
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slab waveguides,” Optical and Quantum Electronics 37(1-3), 37–61 (2005).
[21] Hammer, M., “EIMS — 2-D multilayer waveguide mode solver, variational effective index approximation.”

https://www.computational-photonics.eu/eims.html.
[22] Ivanova, O. V., [Dimensionality Reduction in Computational Photonics], University of Twente, Enschede, The

Netherlands (2010). Ph.D. Thesis.
[23] Ivanova, O. V., Stoffer, R., and Hammer, M., “A variational mode solver for optical waveguides based on quasi-

analytical vectorial slab mode expansion,” (2013). arXiv:1307.1315v2 [physics.optics].
[24] Hammer, M., “FiMS — Modes of circular multi-step index optical fibers.”

https://www.computational-photonics.eu/fims.html.
[25] Snyder, A. W. and Love, J. D., [Optical Waveguide Theory ], Chapman and Hall, London, New York (1983).
[26] Hammer, M., “WGMs — Whispering gallery modes of circular 2-D dielectric optical cavities.”

https://www.computational-photonics.eu/wgms.html.
[27] Franchimon, E. F., Hiremath, K. R., Stoffer, R., and Hammer, M., “Interaction of whispering gallery modes in inte-

grated optical micro-ring or -disk circuits: Hybrid CMT model,” Journal of the Optical Society of America B 30(4),
1048–1057 (2013).

[28] Hammer, M., “MULS — Oblique incidence of plane waves on dielectric multilayer stacks.”
https://www.computational-photonics.eu/muls.html.

[29] Born, M. and Wolf, E., [Principles of Optics, 7th. ed.], Cambridge University Press, Cambridge, UK (1999).
[30] Hammer, M., “QuEPS — 2-D frequency domain solver for rectangular optical guided-wave scattering problems.”

https://www.computational-photonics.eu/queps.html.
[31] Hammer, M., “Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated

optics,” Optics Communications 235(4–6), 285–303 (2004).

12

Proc. of SPIE Vol. 12004  1200414-12
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 21 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


